Rates of convergence of Meyer-König and Zeller operators based on q-integers


Altin A., Doǧru O., Özarslan M. A.

WSEAS Transactions on Mathematics, cilt.4, sa.4, ss.313-318, 2005 (Scopus) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 4 Sayı: 4
  • Basım Tarihi: 2005
  • Dergi Adı: WSEAS Transactions on Mathematics
  • Derginin Tarandığı İndeksler: Scopus
  • Sayfa Sayıları: ss.313-318
  • Anahtar Kelimeler: Lipschitz type maximal functions space, Modulus of continuity, Positive linear operators, q- Laguerre polynomials, q-integers, q-Meyer König and Zeller operators
  • Ankara Üniversitesi Adresli: Evet

Özet

In the present paper, we obtain a quantitative estimate by means of Lipschitz type maximal functions for the q-Meyer König and Zeller operators defined by Doǧru and Duman in [7]. Laguerre type positive linear operators based on the q-integers, including the operators in [7], are also intoduced and Korovkin type approximation properties and rates of convergence are obtained for this generalization.