INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, cilt.11, sa.2, ss.339-350, 2020 (ESCI)
In this paper we investigate some Korovkin type approximation properties of the q-Meyer-Konig and Zeller operators and Durrmeyer variant of the q-Meyer-Konig and Zeller operators via Abel summability method which is a sequence-to-function transformation and which extends the ordinary convergence. We show that the approximation results obtained in this paper are more general than some previous results. We also obtain the rate of Abel convergence for the corresponding operators. Finally, we conclude our results with some graphical analysis.