Compactness of commutators of some integral operators on generalized Morrey spaces with variable exponent


Aliyev J. K., Aydoğdu A., Aykol Kocakuşaklı C., Esen Almali S., Hasanov J. J.

INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025 (SCI-Expanded, Scopus) identifier identifier

Özet

We consider the generalized Morrey spaces $ \mathcal {M}<^>{p(\cdot ),\varphi }(\Omega ) $ Mp(& sdot;),phi(Omega) with variable exponent $ p(x) $ p(x) and a general function $ \varphi (x,r) $ phi(x,r) defining the Morrey-type norm. In case of unbounded sets $ \Omega \subset {\mathbb {R}<^>{n}} $ Omega subset of Rn we prove the compactness of the commutators of the Riesz potential and Calder & oacute;n-Zygmund singular operators in variable exponent generalized Morrey spaces, where $ b \in VMO(\Omega ) $ b is an element of VMO(Omega).