INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025 (SCI-Expanded, Scopus)
We consider the generalized Morrey spaces $ \mathcal {M}<^>{p(\cdot ),\varphi }(\Omega ) $ Mp(& sdot;),phi(Omega) with variable exponent $ p(x) $ p(x) and a general function $ \varphi (x,r) $ phi(x,r) defining the Morrey-type norm. In case of unbounded sets $ \Omega \subset {\mathbb {R}<^>{n}} $ Omega subset of Rn we prove the compactness of the commutators of the Riesz potential and Calder & oacute;n-Zygmund singular operators in variable exponent generalized Morrey spaces, where $ b \in VMO(\Omega ) $ b is an element of VMO(Omega).