Abel transforms of convolution operators


ATLIHAN Ö. G., ÜNVER M.

GEORGIAN MATHEMATICAL JOURNAL, cilt.22, sa.3, ss.323-329, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 3
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1515/gmj-2015-0025
  • Dergi Adı: GEORGIAN MATHEMATICAL JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.323-329
  • Anahtar Kelimeler: Abel convergence, convolution operator, Korovkin type approximation theorem, CONVERGENCE
  • Ankara Üniversitesi Adresli: Evet

Özet

The classical Korovkin approximation theory deals with the convergence of a given sequence {L-n} of positive linear operators on C[a,b]. When the sequence of positive linear operators does not converge to the identity operator it may be useful to use some summability methods. In this paper, we study some Korovkin type approximation theorems for the sequences of convolution operators via the Abel method, which is a sequence-to-function transformation. We also deal with the rate of Abel convergence.