Power Series Expansions for the Distribution and Mean Value Function of a Geometric Process with Weibull Interarrival Times


AYDOĞDU H., KARABULUT İ.

NAVAL RESEARCH LOGISTICS, cilt.61, sa.8, ss.599-603, 2014 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 61 Sayı: 8
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1002/nav.21605
  • Dergi Adı: NAVAL RESEARCH LOGISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.599-603
  • Anahtar Kelimeler: convolution, geometric function, power series, Weibull distribution, RENEWAL FUNCTION
  • Ankara Üniversitesi Adresli: Evet

Özet

The geometric process is considered when the distribution of the first interarrival time is assumed to be Weibull. Its one-dimensional probability distribution is derived as a power series expansion of the convolution of the Weibull distributions. Further, the mean value function is expanded into a power series using an integral equation. (c) 2014 Wiley Periodicals, Inc. Naval Research Logistics, 61: 599-603, 2014