Two-dimensional inversion of direct current resistivity data incorporating topography by using finite difference techniques with triangle cells: Investigation of Kera fault zone in western Crete


DEMİRCİ İ., Erdogan E., CANDANSAYAR M. E.

GEOPHYSICS, cilt.77, sa.1, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 77 Sayı: 1
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1190/geo2011-0130.1
  • Dergi Adı: GEOPHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Ankara Üniversitesi Adresli: Evet

Özet

In this study, we suggest the use of a finite difference (FD) forward solution with triangular grid to incorporate topography into the inverse solution of direct current resistivity data. A new inversion algorithm was developed that takes topography into account with finite difference and finite element forward solution by using triangular grids. Using the developed algorithm, surface topography could also be incorporated by using triangular cells in a finite difference forward solution. Initially, the inversion algorithm was tested for two synthetic data sets. Inversion of synthetic data with the finite difference forward solution gives accurate results as well as inversion with finite element forward solution and requires less CPU time. The algorithm was also tested with a field data set acquired across the Kera fault located in western Crete, Greece. The fault location and basement depth of sedimentary units were resolved by the developed algorithm. These inversion results showed that if underground structure boundaries are not shaped according to surface topography, inversion using our finite difference forward solution with triangular cells is superior to inversion using our finite element forward solution in terms of CPU time and estimated models.