A Dunkl Analogue of Operators Including Two-Variable Hermite polynomials


Creative Commons License

AKTAŞ R., ÇEKİM B., TAŞDELEN YEŞİLDAL F.

BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, cilt.42, sa.5, ss.2795-2805, 2019 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 42 Sayı: 5
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1007/s40840-018-0631-z
  • Dergi Adı: BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2795-2805
  • Anahtar Kelimeler: Dunkl analogue, Hermite polynomial, Modulus of continuity, Korovkin's type approximation theorem, CONVERGENCE
  • Ankara Üniversitesi Adresli: Evet

Özet

The aim of this paper is to introduce a Dunkl generalization of the operators including two-variable Hermite polynomials which are defined by Krech and to investigate approximating properties for these operators by means of the classical modulus of continuity, second modulus of continuity and Peetre's K-functional.