Biocontrol potential of Apilactobacillus kunkeei EIR/BG-1 against infectious diseases in honey bees (Apis mellifera L.)


Kıran F., Sevin S., Ceylan A.

Veterinary Research Communications, cilt.47, sa.2, ss.753-765, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 47 Sayı: 2
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s11259-022-10036-3
  • Dergi Adı: Veterinary Research Communications
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.753-765
  • Anahtar Kelimeler: American Foulbrood disease, Honey bee health, Immunity, Nosemosis, Probiotic, Prophylactic feed supplement, PAENIBACILLUS-LARVAE INFECTION, LACTOBACILLUS-KUNKEEI, PROBIOTICS, BACTERIA, STRAINS, HYMENOPTERA, PREVENTION, MIDGUT
  • Ankara Üniversitesi Adresli: Evet

Özet

© 2022, The Author(s), under exclusive licence to Springer Nature B.V.The significant reduction of honey bee colonies due to the various infectious agents highlights the need for the development of new alternatives and integrated management strategies to keep a hive strong and healthy. The main purpose of this study was to develop an environmentally and friendly microbial feed supplements to prevent honey bee mortality and keep the bee colony population healthy and productive. For this aim, Apilactobacillus kunkeei EIR/BG-1 isolated from honey bee gut microbiota was evaluated for its preventive role against American Foulbrood disease and nosemosis. To test the ability of the strain EIR/BG-1 for suppressing Paenibacillus larvae growth under in vitro conditions, the agar well diffusion method was used and viable cells of the strain EIR/BG-1 inhibited the growth of P. larvae with an efficient inhibition zone (24 ± 0.8 mm) similar to tetracycline antibiotic (30 µg). To determine the preventive role of the strain EIR/BG-1 on infection progression, its viable cells were applied against nosemosis in a laboratory experimental setting. Our results showed that prophylactic supplementation of Al. kunkeei EIR/BG-1 (106 cfu/bee) significantly reduced the spore load (66 ± 6.1%). Besides, gene expression of antimicrobial peptides in gut tissue has been up-regulated and infected midgut epithelium integrity and peritrophic membrane production were improved. In conclusion, our findings suggest that prophylactic supplementation of Al. kunkeei EIR/BG-1 as a natural strategy may enhance the honey bee’s response when challenged by pathogens. Field applications towards gaining a better understanding of its biocontrol role will be the main goal of our future researches.