Carpathian Mathematical Publications, cilt.13, sa.2, ss.485-500, 2021 (ESCI)
© Harmanci A., Kurtulmaz Y., Ungor B., 2021.In this paper, we focus on the duo ring property via quasinilpotent elements, which gives a new kind of generalizations of commutativity. We call this kind of rings qnil-duo. Firstly, some properties of quasinilpotents in a ring are provided. Then the set of quasinilpotents is applied to the duo property of rings, in this perspective, we introduce and study right (resp., left) qnil-duo rings. We show that this concept is not left-right symmetric. Among others, it is proved that if the Hurwitz series ring H(R; α) is right qnil-duo, then R is right qnil-duo. Every right qnil-duo ring is abelian. A right qnil-duo exchange ring has stable range 1.