CHEMICAL COMPOSITION OF INTERMEDIATE-MASS STAR MEMBERS OF THE M6 (NGC 6405) OPEN CLUSTER


Creative Commons License

KILIÇOĞLU T., Monier R., Richer J., Fossati L., Albayrak B.

ASTRONOMICAL JOURNAL, cilt.151, sa.3, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 151 Sayı: 3
  • Basım Tarihi: 2016
  • Doi Numarası: 10.3847/0004-6256/151/3/49
  • Dergi Adı: ASTRONOMICAL JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: open clusters and associations: individual (M6), stars: abundances, stars: individual (HD 318101), ATOMIC TRANSITION-PROBABILITIES, LTE LINE-FORMATION, A-TYPE STARS, RADIATIVE ACCELERATION CALCULATIONS, F-DWARF MEMBERS, ABUNDANCE ANALYSIS, OSCILLATOR-STRENGTHS, STELLAR EVOLUTION, MODEL ATOM, INCLUDING DIFFUSION
  • Ankara Üniversitesi Adresli: Evet

Özet

We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500-5840 angstrom wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the H-beta profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 +/- 0.03 dex from the iron abundances of the F-type stars. We find that. for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars. probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with. that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild. Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montreal stellar evolution code XEVOL which self-consistently. treats. all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed. which are still under investigation.