TALANTA, cilt.210, 2020 (SCI-Expanded)
In this work, we reported an electrochemical aptasensor based on the poly-3-amino-1,2,4-triazole-5-thiol/graphene oxide composite (P(ATT)-GO) and gold nanoparticles (AuNPs) modified graphite screen-printed electrode (GSPE) (GSPE/P(ATT)-GO/AuNPs) for determination of lipocalin-2 (LCN2) (neutrophil gelatinase-associated lipocalin). A sandwich based strategy was utilized to enhance the electrochemical signal. First, a thiol tethered DNA aptamer was immobilized onto the composite electrode. Then, the LCN2 solution was incubated with the aptamer modified GSPE/P(ATT)-GO/AuNPs. Secondary aptamer (Apt2) peculiar to the LCN2 and labeled with biotin was interacted with the LCN2. A streptavidin-alkaline phosphatase conjugate was then applied to the surface. The determination of LCN2 was performed by using the electroactive property of alpha-naphthol which is acquired the product from the interaction between alkaline phosphatase and alpha-naphthyl phosphate. The constructed electrode was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The aptamer modified GSPE/P(ATT)-GO/AuNPs showed the superior electrocatalytic performance towards the voltamrnetric determination of LCN2 with a wide linear range (1.0-1000.0 ng/mL) and a low limit of detection (LOD) (0.3 ng/ mL). The proposed aptasensor revealed the excellent sensitivity, anti-interference ability and reproducibility which approved that the GSPE/P (ATT)-GO/AuNPs is a promising composite for the sensitive detection of LCN2. The fabricated aptasensor was applied for the determination of LCN2 in fetal bovine serum samples using the standard addition method and the recovery values were in the range of 99.2% and 103.22%.