Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term


Selvam A. G. M., Alzabut J., Jacintha M., Ozbekler A.

JOURNAL OF FUNCTION SPACES, cilt.2020, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2020
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1155/2020/5495873
  • Dergi Adı: JOURNAL OF FUNCTION SPACES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Agricultural & Environmental Science Database, MathSciNet, zbMATH, Directory of Open Access Journals, Civil Engineering Abstracts
  • Ankara Üniversitesi Adresli: Hayır

Özet

The paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Delta[psi(lambda)z(eta) (lambda)] + p(lambda)z(eta) (lambda) + q(lambda)F(Sigma(lambda-1+mu)(s=lambda 0) (lambda - s - 1)((-mu)) y(s)) = , where z(lambda) = a(lambda) + b(lambda)Delta(mu) y(lambda), Delta(mu) stands for the fractional difference operator in Riemann-Liouville settings and of order mu, 0 < mu <= 1, and eta >= 1 is a quotient of odd positive integers and lambda is an element of N lambda 0+1-mu. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.