An analysis of Schottky barrier in silicene/Ga2SeS heterostructures by employing electric field and strain


Creative Commons License

Caglayan R., Guler H. E., Mogulkoc Y.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS, cilt.24, ss.10210-10221, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1039/d2cp00228k
  • Dergi Adı: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, INSPEC, MEDLINE
  • Sayfa Sayıları: ss.10210-10221
  • Ankara Üniversitesi Adresli: Evet

Özet

Two-dimensional materials are leading the way in nanodevice applications thanks to their various advantages. Although two-dimensional materials show promise for many applications, they have certain limitations. In the last decade, the increasing demand for the applications of novel two-dimensional materials has accelerated heterostructure studies in this field. Hence, restoring the combination of two- dimensional heterostructured materials has been reported. In this paper, we show that the effect of the external electric field and biaxial strain on the silicene/Ga2SeS heterostructure has a critical impact on the tuning of the Schottky barrier height. The findings such as the variation of the electronic band gap, interlayer charge transfer, total dipole moment, and n-type/p-type Schottky barrier transitions of the silicene/Ga2SeS heterostructure under external effects imply that the device performance can be adjusted with Janus 2D materials.