Sobolev Orthogonal Polynomials on a Simplex


Creative Commons License

AKTAŞ R., Xu Y.

INTERNATIONAL MATHEMATICS RESEARCH NOTICES, cilt.2013, sa.13, ss.3087-3131, 2013 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2013 Sayı: 13
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1093/imrn/rns141
  • Dergi Adı: INTERNATIONAL MATHEMATICS RESEARCH NOTICES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.3087-3131
  • Ankara Üniversitesi Adresli: Evet

Özet

The Jacobi polynomials on the simplex are orthogonal polynomials with respect to the weight function W-gamma(x) = x(1)(gamma 1) ... x(d)(gamma d) (1 - vertical bar x vertical bar)(gamma d+1)when all gamma(i)>-1 and they are eigenfunctions of a second-order partial differential operator L-gamma. The singular cases that some, or all, gamma(1),...,gamma(d+1) are -1 are studied in this paper. First, a complete basis of polynomials that are eigenfunctions of L-gamma in each singular case is found. Secondly, these polynomials are shown to be orthogonal with respect to an inner product which is explicitly determined. This inner product involves derivatives of the functions, hence the name Sobolev orthogonal polynomials.