The p-Drazin Inverse for Operator Matrix over Banach Algebras


Creative Commons License

Chen H., Zou H., ÇALCI T., KÖSE H.

FILOMAT, cilt.34, sa.14, ss.4597-4605, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 34 Sayı: 14
  • Basım Tarihi: 2020
  • Doi Numarası: 10.2298/fil2014597c
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH
  • Sayfa Sayıları: ss.4597-4605
  • Anahtar Kelimeler: p-Drazin inverse, operator matrix, Banach algebra
  • Ankara Üniversitesi Adresli: Evet

Özet

An element a in a Banach algebra A has p-Drazin inverse provided that there exists b is an element of comm(a) such that b = b(2)a, a(k) - a(k+1)b is an element of J(A) for some k is an element of N. In this paper, we present new conditions for a block operator matrix to have p-Drazin inverse. As applications, we prove the p-Drazin invertibility of the block operator matrix under certain spectral conditions.