Search for a resonance decaying into a scalar particle and a Higgs boson in the final state with two bottom quarks and two photons in proton–proton collisions at s = 13 TeV with the ATLAS detector


Creative Commons License

Aad G., Aakvaag E., Abbott B., Abeling K., Abicht N., Abidi S., ...Daha Fazla

Journal of High Energy Physics, cilt.2024, sa.11, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2024 Sayı: 11
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/jhep11(2024)047
  • Dergi Adı: Journal of High Energy Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC, zbMATH, Directory of Open Access Journals, Nature Index
  • Anahtar Kelimeler: Beyond Standard Model, Hadron-Hadron Scattering, Hadron-Hadron scattering, Higgs Physics
  • Ankara Üniversitesi Adresli: Evet

Özet

A search for the resonant production of a heavy scalar X decaying into a Higgs boson and a new lighter scalar S, through the process X → S(→bb¯)H(→γγ), where the two photons are consistent with the Higgs boson decay, is performed. The search is conducted using an integrated luminosity of 140 fb−1 of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed over the mass range 170 ≤ mX ≤ 1000 GeV and 15 ≤ mS ≤ 500 GeV. Parameterised neural networks are used to enhance the signal purity and to achieve continuous sensitivity in a domain of the (mX, mS) plane. No significant excess above the expected background is found and 95% CL upper limits are set on the cross section times branching ratio, ranging from 39 fb to 0.09 fb. The largest deviation from the background-only expectation occurs for (mX, mS) = (575, 200) GeV with a local (global) significance of 3.5 (2.0) standard deviations.