Investigation of Formulation Variables and Excipient Interaction on the Production of Niosomes


Creative Commons License

SEZGİN BAYINDIR Z., YÜKSEL N.

AAPS PHARMSCITECH, cilt.13, sa.3, ss.826-835, 2012 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 3
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1208/s12249-012-9805-4
  • Dergi Adı: AAPS PHARMSCITECH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.826-835
  • Anahtar Kelimeler: drug delivery systems, drug release, multiple regression, niosomes, paclitaxel, SUSTAINED-RELEASE, PACLITAXEL, NANOPARTICLES, DELIVERY, SYSTEMS, LIPOSOMES, MICELLES
  • Ankara Üniversitesi Adresli: Evet

Özet

The aim of this study was to investigate the effects of formulation and process variables on the properties of niosomes formed from Span 40 as nonionic surfactant. A variety of formulations encapsulating Paclitaxel, a hydrophobic model drug, were prepared using different dicetyl phosphate (DCP) and Span 40-cholesterol (1:1) amounts. Formulations were optimized by multiple regression analysis to evaluate the changes on niosome characteristics such as entrapment efficiency, particle size, polydispersity index, zeta potential and in vitro drug release. Multiple regression analysis revealed that as Span 40-cholesterol amounts in the formulations were increased, zeta potential and percent of drug released at 24th hour were decreased. Besides, DCP was found to be effective on increasing niosome size. As a process variable, the effect of sonication was observed and findings revealed an irreversible size reduction on Span 40 niosomes after probe sonication. Monodisperse small sized (133 +/- 6.01 nm) Span 40 niosomes entrapping 98.2% of Paclitaxel with a weight percentage of 3.64% were successfully prepared. The drug-excipient interactions in niosomes were observed by differential scanning calorimetry and X-ray powder diffraction analysis. Both techniques suggest the conversion of PCTs' crystal structure to amorphous form. The thermal analyses demonstrate the high interaction between drug and surfactant that explains high entrapment efficiency. After 3-month storage, niosomes preserved their stability in terms of drug amount and particle size. Overall, this study showed that Span 40 niosomes with desired properties can be prepared by changing the content and production variables.