Synergistic interaction of metal loaded multifactorial nanocatalysts over bifunctional transalkylation for environmental applications


Altindas C., Sher F., Smjecanin N., Lima E. C., Rashid T., Ul Hai I., ...Daha Fazla

ENVIRONMENTAL RESEARCH, cilt.216, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 216
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.envres.2022.114479
  • Dergi Adı: ENVIRONMENTAL RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, EMBASE, Environment Index, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Chemical engineering, Transalkylation, Heavy reformate, Toluene mixture, ZSM-5, Beta catalysts, Xylenes, Coke deposition, Energy and fuels, HEAVY REFORMATE, DEALKYLATION-TRANSALKYLATION, ZEOLITES, TOLUENE, CONVERSION, CATALYSTS, 1,2,4-TRIMETHYLBENZENE, AROMATICS, BETA, HYDROGENOLYSIS
  • Ankara Üniversitesi Adresli: Evet

Özet

A feasible and cost-effective process for utilization of toluene and heavy reformate is the conversion of its streams by transalkylation reaction into highly valuable xylenes. The process is usually catalysed by zeolites and the challenges to overcome in transalkylation of heavy reformate with toluene over zeolites are their selectivity, activity, long-term stability, and coke formation. Current study aimed to investigate xylenes production by transalkylation reaction on the synthesized metal-doped zeolite catalysts and to characterize prepared catalysts by FTIR, SEM, EDS and BET analysis. Toluene/heavy reformate modelled mixture was utilized as a feed. For the first time Beta and ZSM-5 catalysts with 10% (w/w) cerium and 0.1% (w/w) palladium were synthesized by calcination and wet impregnation method. Catalytic tests were performed by continuous-flow gas/solid catalytic fixed bed reactor at atmospheric pressure, 2 h-1 and 5 h-1 and 250, 300, 350 and 400 degrees C. Experimental results revealed that the highest heavy reformate conversion (98.94%) and toluene conversion (9.82%) were obtained over H-ZSM-5, at 400 degrees C and 2 h-1 WHSV. The highest xylene selectivity (11.53) was achieved over H-ZSM-5, and the highest p-xylene percentage (62.40%), using Ce-ZSM-5 catalyst. ZSM-5 catalysts showed more resistance to coke deposition than Beta zeolites. The present study delivers novel approach and catalysts, which have immense potential for developing safer and inexpensive transalkylation process in industry.