Phylogenetic diversity of isolates belonging to genera Geobacillus and Aeribacillus isolated from different geothermal regions of Turkey


Cihan A., Ozcan B., Tekin N., Cokmus C.

WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, cilt.27, sa.11, ss.2683-2696, 2011 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 27 Sayı: 11
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1007/s11274-011-0742-2
  • Dergi Adı: WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2683-2696
  • Anahtar Kelimeler: Isolation, Thermophilic, Geobacillus, Aeribacillus, 16S rRNA gene, ARDRA, THERMOPHILIC BACILLI, SP-NOV., RESTRICTION ANALYSIS, GENUS BACILLUS, BACTERIA, IDENTIFICATION, STEAROTHERMOPHILUS, THERMOLEOVORANS, LICHENIFORMIS, PURIFICATION
  • Ankara Üniversitesi Adresli: Evet

Özet

The phylogenetic diversity of 31 thermophilic bacilli belonging to genera Geobacillus and Aeribacillus were investigated which were isolated from various geothermal sites of Turkey. Twenty-seven of these isolates were found to be belonged within the genus Geobacillus, whereas 4 of them were identified as Aeribacillus pallidus. The comparative 16S rRNA gene sequence analyses revealed that the A. pallidus isolates displayed sequence similarity values from 98.0 to 99.6% to their closest relative. Furthermore, Geobacillus isolates showed sequence similarity values from 88.9 to 99.8% with the reference type strains. According to the phylogenetic analysis, isolates belonging to genus Geobacillus were diverged into nine clusters and among these isolates, 19 of them were identified as strains related to G. caldoproteolyticus, G. thermodenitrificans, G. stearothermophilus, G. thermoglucosidasius and G. toebii with the most abundant 13 isolates from G. caldoproteolyticus. Four of the Geobacillus isolates were named as unidentified mix group, as they found to be genetically very homogenous like their closely related type species: G. thermoleovorans, G. vulcani, G. lituanicus, G. kaustophilus, G. caldovelox, G. caldotenax, and G. uralicus. Moreover, the sequence comparisons of E173a, E265, C161ab and A142 isolates demonstrated that they represented novel species among genus Geobacillus as they shared lower than 96.7% sequence similarity to all the described type species. The AluI-, HaeIII- and TaqI-ARDRA results were in congruence with the 16S rRNA gene sequence analyses. By ARDRA results, the isolates were able to be differentiated and clustered, the discriminative restriction fragments of these isolates and type species were determined and the novelty of E173, E265, C161ab and A142 isolates could be displayed. Some differentiating phenotypic characters and the ability of amylase, glucosidase and protease production of these bacilli were also studied and biotechnologically valuable thermostable enzyme producing isolates were introduced in order to use in further studies.