APPLIED RADIATION AND ISOTOPES, cilt.68, sa.6, ss.1040-1048, 2010 (SCI-Expanded)
In this study, true coincidence-summing (TCS) correction factors have been measured for the sources (22)Na, (60)Co, (133)Ba and (152)Eu by use of three large volume coplanar grid CdZnTe (acronym: CZT) detectors. In case of a close-in detection geometry, two different TCS calculation algorithms were used to compute the required TCS correction factors. Both of the algorithms are based on the measured total-to-peak (TTP) ratio and full-energy peak (FEP) efficiency values that were obtained using almost "single" energy and coincidence-free nuclides. The results for TCS correction factors obtained by two different algorithms were agreeable to each other. The obtained TCS factors were ranged from about 7% to 30.5% in a 2250 mm(3) CZT detector when a close counting geometry was used. For other two detectors with a volume of 1000 and 1687.5 mm(3), the resulted TCS correction factors were relatively smaller and varied between about 0.1% and 20% at the close counting geometry condition. Therefore, the results indicate that there is a need for the estimation of TCS corrections in CZT detectors, especially when their crystal volumes are greater than 1 cm(3) and these detectors are used in the case of a close-in detection geometry. (C) 2010 Elsevier Ltd. All rights reserved.