PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, cilt.26, sa.9, ss.923-933, 2021 (SCI-Expanded)
The use of 3D printing (3DP) technology, which has been continuously evolving since the 1980s, has recently become common in healthcare services. The introduction of 3DP into the pharmaceutical industry particularly aims at the development of patient-centered dosage forms based on structure design. It is still a new research direction with potential to create the targeted release of drug delivery systems in freeform geometries. Although the use of 3DP technology for solid oral dosage forms is more preferable, studies on transdermal applications of the technology are also increasing. Microneedle sequences are one of the transdermal drug delivery (TDD) methods which are used to bypass the minimally invasive stratum corneum with novel delivery methods for small molecule drugs and vaccines. Microneedle arrays have advantages over many traditional methods. It is attractive with features such as ease of application, controlled release of active substances and patient compliance. Recently, 3D printers have been used for the production of microneedle patches. After giving a brief overview of 3DP technology, this article includes the materials necessary for the preparation of microneedles and microneedle patches specifically for penetration enhancement, preparation methods, quality parameters, and their application to TDD. In addition, the applicability of 3D microneedles in the pharmaceutical industry has been evaluated.