Scattering Properties of Eigenparameter-Dependent Impulsive Sturm-Liouville Equations


Bairamov E., AYGAR KÜÇÜKEVCİLİOĞLU Y., Oznur G. B.

BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, cilt.43, sa.3, ss.2769-2781, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 43 Sayı: 3
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1007/s40840-019-00834-5
  • Dergi Adı: BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.2769-2781
  • Anahtar Kelimeler: Scattering solution, Resolvent operator, Impulsive condition, Spectral parameter, Eigenvalue, Boundary value problem, BOUNDARY-VALUE-PROBLEMS, SPECTRUM
  • Ankara Üniversitesi Adresli: Evet

Özet

The main aim of this work is to investigate the properties of scattering solutions and the scattering function of an impulsive Sturm-Liouville boundary value problem (ISBVP). It is important that the boundary condition depend on an eigenvalue parameter. After getting the Jost solution of this ISBVP, we find the scattering function and resolvent operator. Also, we discuss the discrete spectrum of this boundary value problem in detail. Finally, we present examples on an unperturbated ISBVPs to demonstrate the application of our results.