A novel 2-dimensional nanocomposite as a mediator for the determination of doxorubicin in biological samples


Mehmandoust M., Khoshnavaz Y., Karimi F., ÇAKAR S., ÖZACAR M., ERK N.

ENVIRONMENTAL RESEARCH, cilt.213, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 213
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.envres.2022.113590
  • Dergi Adı: ENVIRONMENTAL RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, EMBASE, Environment Index, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Doxorubicin monitoring, Graphitic carbon nitride, Graphene nanoplatelets, Biological sample, REDUCED GRAPHENE OXIDE, CARBON NITRIDE, SENSOR, PHOTOCATALYSTS, NANOPLATELETS, NANOMATERIAL, PERFORMANCE, MORPHOLOGY, EVOLUTION, FLUID
  • Ankara Üniversitesi Adresli: Evet

Özet

In our study, the electrochemical properties of a novel activated nanocomposite were studied with 2-dimensional graphitic carbon nitride/sodium dodecyl sulfate/graphene nanoplatelets on the screen-printed electrodes (2D-gC3N4/SDS/GNPs/SPE). The as-fabricated sensor exhibited excellent electrochemical performance, including wide dynamic ranges from 0.03 to 1.0 and 1.0-13.5 mu M with a low limit of detection (LOD) of 10.0 nM. The fabricated 2D-g-C3N4/SDS/GNPs/SPE electrode exhibited high sensitivity, stability, good reproducibility, reusability, and repeatability towards DOX sensing. It can be utilized in real samples, including human plasma and urine, with excellent correlations and coefficients of variation below 6.0%. Therefore, this study presents potential application values in sensing DOX with efficient performance. Finally, the accuracy was attested by comparison with high-performance liquid chromatography (HPLC) as the reference method, signalizing a good agreement.