Maximum likelihood estimation of spatial lag models in the presence of the error-prone variables


ERALP A., GÖKMEN Ş., DAĞALP R.

COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, cilt.52, sa.10, ss.3229-3240, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 52 Sayı: 10
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/03610926.2022.2147795
  • Dergi Adı: COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Business Source Elite, Business Source Premier, CAB Abstracts, Compendex, Veterinary Science Database, zbMATH, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.3229-3240
  • Anahtar Kelimeler: Spatial econometrics models, spatial lag model, spatial autoregressive model, error-prone variables, simulation study
  • Ankara Üniversitesi Adresli: Evet

Özet

The literature has recently devoted close attention to error-prone variables. Nevertheless, only a small number of research have considered measurement error in spatial econometric models. The presence of measurement error in the spatial econometric models needs to be considered as a result of the rise in spatial data analysis, as the relationship between the spatial correlation and measurement error influences parameter estimation. Therefore, in this study, the impacts of classical measurement error on the parameter estimation of the spatial lag model are theoretically examined for both response and explanatory variables. Then, using simulation studies, finite sample properties are investigated for various situations. The major findings indicate that although error-prone response variable has an opposing bias effect on parameter estimations, error-prone explanatory variables have a significant influence effect on the bias of parameter estimations. As a result, it is occasionally possible to obtain unbiased estimates only in certain circumstances.