RADIOLOGY ADVANCES, cilt.2, sa.2, 2025 (ESCI)
Background: Accurate interpretation of meniscal anomalies on knee MRI is critical for diagnosis and treatment planning, with artificial intelligence emerging as a promising tool to support and enhance this process through automated anomaly detection. Purpose: To evaluate the impact of an artificial intelligence (AI) anomaly detection assistant on radiologists' interpretation of meniscal anomalies in undersampled, deep learning (DL)-reconstructed knee MRI and assess the relationship between reconstruction quality metrics and anomaly detection performance. Materials and Methods: This retrospective study included 947 knee MRI examinations; 51 were excluded for poor image quality, leaving 896 participants (mean age, 44.7 +/- 15.3 years; 472 women). Using 8-fold undersampled data, DL-based reconstructed images were generated. An object detection model was trained on original, fully sampled images and evaluated on 1 original and 14 DL-reconstructed test sets to identify meniscal lesions. Standard reconstruction metrics (normalized root mean square error, peak signal-to-noise ratio, and structural similarity index) and anomaly detection metrics (mean average precision, F1 score) were quantified and compared. Two radiologists independently reviewed a stratified sample of 50 examinations unassisted and assisted with AI-predicted anomaly boxes. McNemar's test evaluated differences in diagnostic performance; Cohen's kappa assessed interrater agreement. Results: On the original images, the anomaly detection model achieved the following: 70.53% precision, 72.17% recall, 63.09% mAP, and a 71.34% F1 score. Comparing performance among the undersampled reconstruction datasets, box-based reconstruction metrics showed better correlation with detection performance than traditional image-based metrics (mAP to box-based SSIM, r = 0.81, P < .01; mAP to image-based SSIM, r = 0.64, P = .01). In 50 participants, AI assistance improved radiologists' accuracy on reconstructed images. Sensitivity increased from 77.27% (95% CI, 65.83-85.72; 51/66) to 80.30% (95% CI, 69.16-88.11; 53/66), and specificity improved from 88.46% (95% CI, 83.73-91.95; 207/234) to 90.60% (95% CI, 86.18-93.71; 212/234) (P < .05). Conclusion: AI-assisted meniscal anomaly detection enhanced radiologists' interpretation of undersampled, DL-reconstructed knee MRI. Anomaly detection may serve as a complementary tool alongside other reconstruction metrics to assess the preservation of clinically important features in reconstructed images, warranting further investigation.