ADVANCES IN APPLIED CLIFFORD ALGEBRAS, cilt.26, sa.2, ss.553-571, 2016 (SCI-Expanded)
Involutions and anti-involutions are self-inverse linear mappings. In three-dimensional Euclidean space , a reflection of a vector in a plane can be represented by an involution or anti-involution mapping obtained by real-quaternions. A reflection of a line about a line in can also be represented by an involution or anti-involution mapping obtained by dual real-quaternions. In this paper, we will represent involution and anti-involution mappings obtaind by dual split-quaternions and a geometric interpretation of each as rigid-body (screw) motion in three-dimensional Lorentzian space .