The sensor applications for prostate and lung cancer biomarkers in terms of electrochemical analysis

Bounoua N., Cetinkaya A., Piskin E., Kaya S. I., ÖZKAN S. A.

Analytical and Bioanalytical Chemistry, vol.416, no.9, pp.2277-2300, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Review
  • Volume: 416 Issue: 9
  • Publication Date: 2024
  • Doi Number: 10.1007/s00216-024-05134-x
  • Journal Name: Analytical and Bioanalytical Chemistry
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Food Science & Technology Abstracts, MEDLINE, Metadex, Pollution Abstracts, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Page Numbers: pp.2277-2300
  • Keywords: Biomarker, Lung cancer, MIP, Prostate cancer, Sensor
  • Ankara University Affiliated: Yes


Prostate and lung cancers are the most common types of cancer and affect a large part of the population around the world, causing deaths. Therefore, the rapid identification of cancer can profoundly impact reducing cancer-related death rates and protecting human lives. Significant resources have been dedicated to investigating new methods for early disease detection. Cancer biomarkers encompass various biochemical entities, including nucleic acids, proteins, sugars, small metabolites, cytogenetic and cytokinetic parameters, and whole tumor cells in bodily fluids. These tools can be utilized for various purposes, such as risk assessment, diagnosis, prognosis, treatment efficacy, toxicity evaluation, and predicting a return. Due to these versatile and critical purposes, there are widespread studies on the development of new, sensitive, and selective approaches for the determination of cancer biomarkers. This review illustrates the significant lung and prostate cancer biomarkers and their determination utilizing electrochemical sensors, which have the advantage of improved sensitivity, low cost, and simple analysis. Additionally, approaches such as improving sensitivity with nanomaterials and ensuring selectivity with MIPs are used to increase the performance of the sensor. This review aims to overview the most recent electrochemical biosensor applications for determining vital biomarkers of prostate and lung cancers in terms of nanobiosensors and molecularly imprinted polymer (MIP)-based biosensors.