Inorganic Chemistry, cilt.49, sa.15, ss.7057-7071, 2010 (SCI-Expanded)
The reactions of hexachlorocyclotriphosphazatriene, N 3P 3Cl 6, with N/O-donor-type N-alkyl (or aryl)-o- hydroxybenzylamines (1a-1e) produce mono- (2a-2e), di- (3a-3d), and tri- (4a and 4b) spirocyclic phosphazenes. The tetrapyrrolidino monospirocyclic phosphazenes (2f-2i) are prepared from the reactions of partly substituted compounds (2a-2d) with excess pyrrolidine. The dispirodipyrrolidinophosphazenes (3e-3h) and trispirophosphazenes (3i-3k) are obtained from the reactions of trans-dispirophosphazenes with excess pyrrolidine and sodium (3-amino-1-propanoxide), respectively. Compounds 3a-3d have cis and trans geometric isomers. Only the trans isomers of these compounds are isolated. Compounds 3a-3h have two stereogenic P atoms. They are expected to be in cis (meso) and trans (racemic) geometric isomers. In the trans trispiro compounds (3i-3k), there are three stereogenic P atoms. They are expected to be in racemic mixtures. The stereogenic properties of 3a-3k are confirmed by 31P NMR spectroscopy upon the addition of the chiral solvating agent; (S)-(+)-2,2,2-trifluoro-1-(9′-anthryl)ethanol. The molecular structures of 3i-3k, 4a, and 4b look similar to a propeller, where the chemical environment of one P atom is different from that of others. Additionally, 4a and 4b are also expected to exist as cis-trans-trans and cis-cis-cis geometric isomers, but both of them are found to be in cis-trans-trans geometries. The solid-state structures of 2a, 2e, 2f, 3e, and 3f are determined by X-ray crystallography. The compounds 2f-2i, 3e-3i, and 3k are screened for antibacterial activity against Gram-positive and Gram-negative bacteria and for antifungal activity against yeast strains. These compounds (except 3f) have shown a strong affinity against most of the bacteria. Minimum inhibitory concentrations (MIC) are determined for 2f-2i, 3e-3i, and 3k. DNA binding and the nature of interaction with pUC18 plasmid DNA are studied. The compounds 2f-2i, 3e-3i, and 3k induce changes on the DNA mobility. The prevention of BamHI and HindIII digestion (except 2g) with compounds indicates that the compounds bind with nucleotides in DNA. © 2010 American Chemical Society.