THE FERMI-WALKER DERIVATIVE IN LIE GROUPS


Karakus F., YAYLI Y.

INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, cilt.10, sa.7, 2013 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 7
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1142/s0219887813200119
  • Dergi Adı: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: Frenet frame, Darboux vector, Fermi-Walker derivative, Fermi-Walker parallelism, non-rotating frame, Lie group, Frenet curve, CURVES
  • Ankara Üniversitesi Adresli: Evet

Özet

In this study, Fermi-Walker derivative, Fermi-Walker parallelism, non-rotating frame, Fermi-Walker termed Darboux vector concepts are given for Lie groups in E-4. First, we get any Frenet curve and any vector field along the Frenet curve in a Lie group. Then, the Fermi-Walker derivative is defined for the Lie group. Fermi-Walker derivative and Fermi-Walker parallelism are analyzed in Lie groups. Finally, the necessary conditions for Fermi-Walker parallelism are explained.