Designing a molecularly imprinted polymer-based electrochemical sensor for the sensitive and selective detection of the antimalarial chloroquine phosphate


Piskin E., Cetinkaya A., ÜNAL M. A., Pérez-López B., Gunatilake U. B., Sene S., ...More

Microchimica Acta, vol.191, no.12, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 191 Issue: 12
  • Publication Date: 2024
  • Doi Number: 10.1007/s00604-024-06820-4
  • Journal Name: Microchimica Acta
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Food Science & Technology Abstracts, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Keywords: Chloroquine phosphate, Differential pulse voltammetry, Electrochemical sensor, Malaria, Modified glassy carbon electrode, Molecularly imprinted polymer, Prussian blue nanoparticles (PBNP)
  • Ankara University Affiliated: Yes

Abstract

For the first time an electrochemical sensor based on nanomaterial-supported molecularly imprinted polymers (MIPs) is applied to the sensitive and specific determination of chloroquine phosphate (CHL). The sensor was produced using an electropolymerization (EP) approach, and it was formed on a glassy carbon electrode (GCE) using CHL as a template and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and aniline (ANI) as functional monomers. Incorporating Prussian blue polyethyleneglycol-amine nanoparticles (PB@PEG-NH2) in the MIP-based electrochemical sensor increased the active surface area and porosity. The developed CHL/AMPS-PANI/PB@PEG-NH2/MIP-GCE sensor was characterized morphologically and electrochemically using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and scanning electron microscopy (SEM). The indirect measurement of CHL was accomplished in 5.0 mmol L−1 [Fe(CN)6]−3/−4 solution using differential pulse voltammetry, displaying linear response between 1.75 × 10−12 and 2.50 × 10−13 M, and limits of detection (LOD) and quantitation (LOQ) of 6.68 × 10−14 M and 2.23 × 10−13 M, respectively, in standard solutions. CHL recoveries in spiked serum and tablet form ranged from 99.13 to 101.51%, while the relative standard deviations (RSD%) were below 2.41% in both types of samples. In addition, the sensor’s excellent selectivity was successfully demonstrated in the presence of components with a chemical structure similar to CHL. Graphical Abstract: (Figure presented.)