ADVANCES IN APPLIED CLIFFORD ALGEBRAS, cilt.23, sa.2, ss.283-299, 2013 (SCI-Expanded)
An involution or anti-involution is a self-inverse linear mapping. Involutions and anti-involutions of real quaternions were studied by Ell and Sangwine [15]. In this paper we present involutions and antiinvolutions of biquaternions (complexified quaternions) and split quaternions. In addition, while only quaternion conjugate can be defined for a real quaternion and split quaternion, also complex conjugate can be defined for a biquaternion. Therefore, complex conjugate of a biquaternion is used in some transformations beside quaternion conjugate in order to check whether involution or anti-involution axioms are being satisfied or not by these transformations. Finally, geometric interpretations of real quaternion, biquaternion and split quaternion involutions and anti-involutions are given.