ps-Drazin Inverses in Banach Algebras


Creative Commons License

Chen H., ÇALCI T.

FILOMAT, vol.33, no.7, pp.2125-2133, 2019 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 33 Issue: 7
  • Publication Date: 2019
  • Doi Number: 10.2298/fil1907125c
  • Journal Name: FILOMAT
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.2125-2133
  • Keywords: ps-Drazin inverse, multiplicative property, additive property, Banach algebra, JACOBSONS LEMMA, CLINES FORMULA, 2 ELEMENTS, EXTENSIONS, SUM
  • Ankara University Affiliated: Yes

Abstract

An element a in a Banach algebra A has ps-Drazin inverse if there exists p(2) = p is an element of comm(2)(a) such that (a - p)(k) is an element of J(A) for some k is an element of N. Let A be a Banach algebra, and let a, b is an element of have ps-Drazin inverses. If a(2)b = aba and b(2)a = bab, we prove that