BI-ROTATIONAL HYPERSURFACE SATISFYING Delta(III)x = A(x) IN 4-SPACE


GÜLER E., YAYLI Y., Hacisalihoglu H. H.

HONAM MATHEMATICAL JOURNAL, cilt.44, sa.2, ss.219-230, 2022 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 44 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.5831/hmj.2022.44.2.219
  • Dergi Adı: HONAM MATHEMATICAL JOURNAL
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI)
  • Sayfa Sayıları: ss.219-230
  • Anahtar Kelimeler: bi-rotational hypersurface, Euclidean spaces, four space, Gauss map, i-th curvature, third Laplace-Beltrami operator, TENSOR PRODUCT SURFACES, 1-TYPE GAUSS MAP, 2-TYPE SURFACES, SPACE, SUBMANIFOLDS, EXTENSION, OPERATOR, E-1(4)
  • Ankara Üniversitesi Adresli: Evet

Özet

We examine the bi-rotational hypersurface x = x(u, v, w) with the third Laplace-Beltrami operator in the four dimensional Euclidean space E-4. Giving the i-th curvatures of the hypersurface x, we obtain the third Laplace-Beltrami operator of the bi-rotational hypersurface satisfying Delta(III)x =Ax for some 4 x 4 matrix A.