Development of ultra-sensitive and selective molecularly imprinted polymer-based electrochemical sensor for L-lactate detection


Piskin E., Cetinkaya A., Eryaman Z., KARADURMUŞ L., ÜNAL M. A., SEZGİNTÜRK M. K., ...Daha Fazla

MICROCHEMICAL JOURNAL, cilt.204, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 204
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.microc.2024.111163
  • Dergi Adı: MICROCHEMICAL JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Food Science & Technology Abstracts, Index Islamicus, Veterinary Science Database
  • Ankara Üniversitesi Adresli: Evet

Özet

Lactate detection is important for the food and healthcare industries, and it's especially important when there's tissue hypoxia, hepatic illness, bleeding, respiratory failure, or sepsis. A new molecularly imprinted polymer (MIP) based electrochemical sensor was fabricated for differential pulse voltammetric assay of L-lactate (LAC). By using ZIF-8@ZnQ nanoparticles, the number of regions and effective surface area were increased. The polymeric film was obtained using 4 aminobenzoic acid (4-ABA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, 2-hydroxyethyl methacrylate (HEMA) as basic monomers, and 2-hydroxy-2-methylpropiophenone one as initiator. The developed 4-ABA/LAC/ZIF-8@ZnQ@MIP-GCE was morphologically characterised using SEM and electrochemically using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements. A linear range of 0.1-1.0 pM LAC with a detection limit of 29.9 fM was found. Lastly, the MIP-based electrochemical sensor detected LAC in commercial human serum samples.