Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye
Tezin Onay Tarihi: 2018
Tezin Dili: Türkçe
Öğrenci: SERHAT CAN
Danışman: MEHMET SERDAR GÜZEL
Özet:Medikal görüntüler tıbbi alanda teşhis ve tedavi gibi amaçlar için kullanılan verilerdir. Bu veriler üzerinden anlamlı çıkarımlarda bulunmak medikal uğraşı alanının yanı sıra görüntü işleme alanı için de ayrı bir çalışma konusu oluşturmaktadır. Esasında, medikal görüntüler üzerinden anlamlı verilerin elde edilmesi, görüntü işleme çalışmalarında ayrı bir ihtisas gerektiren önemli bir çalışma alanı olarak kabul edilmektedir. Elde edilen veriler, hekime hastaya ait teşhis ve tedavi yöntemleri ile ilgili nasıl bir yol izlemesi hususunda önemli bilgiler sunmaktadır. Bu bağlamda, medikal görüntülerden karaciğer, akciğer, kalp, beyin vb. organların CT ve MR gibi görüntüleme yöntemleri ile elde edilen DICOM formatındaki imgelerinden, görüntü işleme yöntemleri ile veri çıkarımı yapmak günümüzde popüler ve önemli bir çalışma alanı olarak kabul edilmektedir. Bu çalışma, medikal resimlerden karaciğer dokusunu, bölütleme yöntemleri ile tespit edip karaciğer dokusuna ait özelliklerin çıkarımını sağlayan yeni bir yöntem önermiş ve bu yöntemi kullanan bir uygulanmanın sonuçlarını detayları ile tartışmıştır. Bu çalışma kapsamında karaciğer organının bulunması, hacminin belirlenip görselleştirilmesi, 3-B modellenmesi ve doku kesitinin gerçekçi oranda hesaplanmasını sağlayan özgün algoritmalar önerilmiş ve bu algoritmaların gerçekleştirildiği özgün bir yazılım deneyler için geliştirilerek algoritmaların doğrulanması sağlanmıştır. Medical images are mainly used with the purpose of diagnoses and treatment in medicine and corresponding fields. Having obtained meaningful results from those images do not only concern medical subject but also interests image processing. Essentially, analyzing medical images are considered as a new and critical field in image processing. These meaningful data may provide crucial information to surgeons or other doctors in terms of finding the best diagnosis and also preplanning of treatments. Analyzing medical images in DICOM format, employing medical visualization techniques such as CT and MR, facilitate to evaluate medical images of vital organs, namely, liver, lung, heart and brain, which has also been accepted as a popular research field in medical image processing. This study proposes a new approach to extract and analyses tissue features of livers from medical images based on segmentation techniques. As well as, the results of an application using this approach is discussed in detail. Overall this study proposes novel algorithms for detection, volume estimation, visualization, 3-D modeling and accurate tissue slice estimation of liver organ respectively. As well as a new software is implemented for experiments so as to verify the performance of those algorithms.