Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye
Tezin Onay Tarihi: 2018
Tezin Dili: Türkçe
Öğrenci: MUHAMMAD RIFTHY KALIDEEN
Danışman: BÜLENT TUĞRUL
Özet:Son zamanlarda Veri Madenciliğinde Gizlilik Koruması (Privacy – Preserving Data Mining - PPDM), bulut bilişim teknolojisinin ortaya çıkmasıyla daha popüler hale geldi. Bulut bilgi işlem, veri sahiplerinin verilerini depolamak ve işlemek için dış kaynak kullanımına izin verir. Ancak bulutta depolanan veriler gizlilik ve güvenlikten yoksundur. Bunun sonucu olarak, kredi kartı kayıtları, tıbbi kayıtlar gibi hassas verilerle ilgilenen kuruluşlar, verileri bulutlara aktarmak konusunda isteksizdir. Bu nedenle, verilerin bir bulutta dış kaynak oluşturmadan önce şifrelenmesi ve şifrelenmiş veriler üzerinde yapılması gereken işlemlerin yapılması gerekir. Güvenli Çok Taraflı Hesaplama (Secure Multiparty Computation - SMC) ve Homomorphic Şifreleme (Homomorphic Encryption - HE) algoritması, bulutun şifrelenmiş metninler üzerinde sorgular oluşturulmasına izin verir ve bulut servis sağlayıcısından ve diğer taraflara (kendi özel verileri hariç) veri, sorgu ve erişim modelini korur. sorgulama işlemi. k - En Yakın Komşu (k – Nearest Neighbor) algoritması, veri madenciliğinde benzerlik eşleşmesini bulmak için en basit ve en çok kullanılan mekansal enterpolasyon yöntemidir. Önerilen çözüm, en iyi performansı elde etmek için Paillier şifreleme sistemini kullanır. Bunun dışında kd - tree ve R - tree algoritmaları, buluttaki verileri en yakın komşuluğu daha hızlı bulmak için depolamak için kullanıldı. Önerilen çözümler, işlemin her senaryosundaki verilerin gizliliğini ve güvenliğini sağladıkları analiz edilmiştir. In recent times Privacy Preserving Data Mining (PPMD) became more popular with emerge of cloud computing technology. Cloud computing allows data owners to outsource their data to store and process. However, it is lack in providing confidentiality, privacy and security for the stored data. Result of this, organizations which are deal with the sensitive data like credit card records, medical records are reluctant to outsource the data to clouds. Thus, data needs to be encrypted before they outsource to a cloud and processing needs to be done on the encrypted data. Secure Multiparty Computation (SMC) and Homomorphic Encryption (HE) algorithm allows the cloud to process queries on the cipher text and they protect the data, query and access pattern from the cloud service provider and other parties (except their private data) involved in the query processing. k – Nearest Neighbor (k - NN) algorithm is the simplest and mostly used spatial interpolation method to find similarity matching in data mining. Proposed solution employ Paillier cryptosystem to get the best performance. Apart from that kd – tree and R – tree algorithms were used to store the data in the clouds to find the matching nearest neighbor in a quicker way. Proposed solutions were analyzed that they ensure the privacy and security of the data in every scenario of the processing.