Bir geometrik sürecin ortalama değer ve varyans fonksiyonları için kuvvet serisi açılımları ve tahminleri


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye

Tezin Onay Tarihi: 2019

Tezin Dili: Türkçe

Öğrenci: MUSTAFA HİLMİ PEKALP

Danışman: HALİL AYDOĞDU

Özet:

Bu çalışmada yenileme sürecinin bir genellemesi olan ve güvenirlik, envanter ve kuyruk teorisi, risk ve garanti analizi ile uygulamalı istatistiğin birçok alanında araştırmacılar tarafından sıklıkla kullanılan geometrik süreç gözönüne alınmıştır. Geometrik sürecin bir boyutlu olasılık dağılımı, dağılım fonksiyonlarının konvolüsyonlarına dayalı olarak verildiğinden, konvolüsyon fonksiyonlarının kuvvet serisi açılımı bulunarak olasılık değerleri hesap edilmiştir. Ayrıca bir geometrik sürecin uygulamalarda çoğunlukla ortalama değer ve varyans fonksiyonu bilgisine ihtiyaç duyulmasından dolayı, bu fonksiyonların sayısal bir yöntem ve kuvvet serisi açılımları yardımıyla hesap edilmesi ve tahmin edilmesi problemi üzerinde durulmuştur. In this study, the geometric process which is a generalization of the renewal process and often used by researchers in reliability, inventory and queuing theory, risk and warranty analysis, and in many fields of applied statistics is considered. Since one-dimensional distribution of the geometric process is based on the convolution of the distribution functions, the probability values are calculated by obtaining the power series expansions of the convolution functions. Further, due to the fact that the applications of the geometric process mostly need the knowledge of the geometric and variance functions, the problem of calculating these functions by a numerical method and power series expansions and of estimating these functions are considered.