The Borel property for 4-dimensional matrices


Tas E.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, vol.45, no.2, pp.473-482, 2016 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 45 Issue: 2
  • Publication Date: 2016
  • Doi Number: 10.15672/hjms.20164512504
  • Journal Name: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.473-482
  • Keywords: Double sequences, Pringsheim convergence, the Borel Property, double sequences of 0's and 1's, DOUBLE SEQUENCES
  • Ankara University Affiliated: Yes

Abstract

In 1909 Borel has proved that "Almost all of the sequences of 0's and 1's are Cesaro summable to 1/2". Then Hill has generalized Borel's result to two dimensional matrices. In this paper we investigate the Borel property for 4-dimensional matrices.