Foods, cilt.14, sa.19, 2025 (SCI-Expanded)
As native bovine whey (WHEY) poses environmental concerns as a high-water-content by-product, this trial aimed at assessing the effectiveness of a thermal–mechanical microparticulation coupled with a fermentative process to concentrate it into a high-protein soft dairy cream. Compared to native whey, in microparticulated (MPW) and fermented (FMPW) matrices, there was a significant increase in proteins (from 0.7 to 8.8%) and lipids (from 0.3 to 1.3%), and a more brilliant yellowness colour. A factorial discriminant analysis (FDA) showed that FMPW had a higher content of saturated fatty acid (SFA) and some specific polyunsaturated fatty acid (PUFA) n-6, and also identified C14:0, C18:1, C18:1 t-11, C18:2 n-6, and C18:3 n-6 as informative biomarkers of microparticulation and fermentative treatments. The SDS-PAGE indicated no effects on the protein profile but indicated its rearrangement into high molecular weight aggregates. Z-sizer and transmission electron microscopy analyses confirmed a different supramolecular structure corresponding to a higher variability and greater incidence of very large molecular aggregates, suggesting that MPW could be accounted as a colloidal matrix that may have similar ball-bearing lubrication properties. Microparticulation of whey could facilitate its circularity into the dairy supply chain through its re-generation from a waste into a high-value fat replacer for dairy-based food production.